EXHAUST EMISSION DATA SHEET

MQ POWER GENERATOR SET

Model: DCA25SSIU4F

The engine used in this generator set is certified to comply with United States EPA Tier 4 and CARB Mobile Off-Highway emission regulations.

Manufacturer:	ISUZU			Bore:	3.35	in.	(85	mm)			
Model:	4LE2T			Stroke:	3.78	in.	(96	mm)			
Туре:	4-Cycle, In-Line, 4-Cylinde	er, Diese	I	Displacement	: 133	cid	(2.2	liters)			
Aspiration:	Turbocharger, ECM, EGR Injection	R, DOC, E	Electronic Direct	Compression Ratio: 17.6:1							
PERFORMA	NCE DATA										
SAE Gross HF	P @ ¹⁸⁰⁰ RPM (60 Hz) Rat	ted 4	0.2								
Load Fuel Cor	nsumption (gal/Hr) Rated	1.	.62								
Load Exhaust	Gas Flow (cfm) Rated Lo	oad 14	48								
Exhaust Gas	Temperature (°F)	84	47								
Un	ited States EPA - M	lobile C	Off-Highway Tier 4	Limits -			25 :	≤~<50 BHF			
Crit				0.44	d En el						
Chite	eria Pollutant	Emi	ssion Requirements	Certifie	a Engi	ne E	missi	ons			
	eria Pollutant of Nitrogen as NO2)	Emi: N/A	gr/bhp-hr	N/A		hp-hr		ons			
NOx (Oxides o					gr/b			ons			
NOx (Oxides o	of Nitrogen as NO2) urned Hydrocarbons)	N/A	gr/bhp-hr	N/A	gr/b gr/bl	hp-hr		ons			
NOx (Oxides of HC (Total Unb	of Nitrogen as NO2) ourned Hydrocarbons) ombined)	N/A N/A	gr/bhp-hr gr/bhp-hr	N/A N/A	gr/b gr/bl gr/bl	hp-hr hp-hr		ons			
NOx (Oxides o HC (Total Unb NOx + HC (Co	of Nitrogen as NO2) ourned Hydrocarbons) ombined) Aonoxide)	N/A N/A N/A	gr/bhp-hr gr/bhp-hr gr/bhp-hr	N/A N/A N/A	gr/b gr/bl gr/bl gr/bl	hp-hr hp-hr hp-hr		ons			
NOx (Oxides of HC (Total Unb NOx + HC (Co CO (Carbon M PM (Particulat	of Nitrogen as NO2) ourned Hydrocarbons) ombined) Aonoxide)	N/A N/A N/A 4.10	gr/bhp-hr gr/bhp-hr gr/bhp-hr gr/bhp-hr	N/A N/A N/A 0.014	gr/b gr/bl gr/bl gr/bl gr/bl	hp-hr hp-hr hp-hr hp-hr		ons			
NOx (Oxides of HC (Total Unb NOx + HC (Co CO (Carbon M PM (Particulat	of Nitrogen as NO2) ourned Hydrocarbons) ombined) Monoxide) re Matter)	N/A N/A N/A 4.10 0.02	gr/bhp-hr gr/bhp-hr gr/bhp-hr gr/bhp-hr gr/bhp-hr	N/A N/A 0.014 0.02	gr/b gr/bl gr/bl gr/bl gr/bl gr/bl	hp-hr hp-hr hp-hr hp-hr hp-hr		ons			
NOx (Oxides of HC (Total Unb NOx + HC (Co CO (Carbon M PM (Particulat NMHC (Non-M	of Nitrogen as NO2) ourned Hydrocarbons) ombined) Monoxide) e Matter) ethane Hydrocarbons)	N/A N/A 4.10 0.02 N/A	gr/bhp-hr gr/bhp-hr gr/bhp-hr gr/bhp-hr gr/bhp-hr gr/bhp-hr gr/bhp-hr	N/A N/A 0.014 0.02 N/A	gr/b gr/bl gr/bl gr/bl gr/bl gr/bl	hp-hr hp-hr hp-hr hp-hr hp-hr hp-hr		ons			
NOx (Oxides of HC (Total Unb NOx + HC (Co CO (Carbon M PM (Particulat NMHC (Non-M NMHC + NOx EPA Engine F	of Nitrogen as NO2) ourned Hydrocarbons) ombined) Monoxide) re Matter) ethane Hydrocarbons) amily: PS2	N/A N/A 4.10 0.02 N/A 3.50	gr/bhp-hr gr/bhp-hr gr/bhp-hr gr/bhp-hr gr/bhp-hr gr/bhp-hr gr/bhp-hr	N/A N/A 0.014 0.02 N/A	gr/b gr/bl gr/bl gr/bl gr/bl gr/bl	hp-hr hp-hr hp-hr hp-hr hp-hr hp-hr		ons			
NOx (Oxides of HC (Total Unb NOx + HC (Co CO (Carbon M PM (Particulat NMHC (Non-M NMHC + NOx EPA Engine F	of Nitrogen as NO2) ourned Hydrocarbons) ombined) Monoxide) e Matter) ethane Hydrocarbons) amily: PS2 e of Conformance: PS2	N/A N/A 4.10 0.02 N/A 3.50 ZXL02.22	gr/bhp-hr gr/bhp-hr gr/bhp-hr gr/bhp-hr gr/bhp-hr gr/bhp-hr gr/bhp-hr ZTB	N/A N/A 0.014 0.02 N/A	gr/b gr/bl gr/bl gr/bl gr/bl gr/bl	hp-hr hp-hr hp-hr hp-hr hp-hr hp-hr		ons			

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY 2023 MODEL YEAR CERTIFICATE OF CONFORMITY WITH THE CLEAN AIR ACT

OFFICE OF TRANSPORTATION AND AIR QUALITY ANN ARBOR, MICHIGAN 48105

Certificate Issued To: Isuzu Motors Limited (U.S. Manufacturer or Importer) Certificate Number: PSZXL02.2ZTB-005	Effective Date: 07/21/2022 Expiration Date: 12/31/2023	Byron J. Bunker, Division Director Compliance Division	Issue Date: 07/21/2022 Revision Date: N/A
Model Year: 2023 Manufacturer Type: Original Engine Manufacturer Engine Family: PSZXL02.2ZTB	Em Fue Aft	bile/Stationary Indicator: Mobile issions Power Category: 19<=kW<37 I Type: Diesel er Treatment Devices: Diesel Oxidation Catalyst I-after Treatment Devices: Electronic Control, Electronic/Electric EGR	- Cooled

Pursuant to Section 213 of the Clean Air Act (42 U.S.C. section 7547) and 40 CFR Part 1039, and subject to the terms and conditions prescribed in those provisions, this certificate of conformity is hereby issued with respect to the test engines which have been found to conform to applicable requirements and which represent the following engines, by engine family, more fully described in the documentation required by 40 CFR Part 1039 and produced in the stated model year.

This certificate of conformity covers only those new compression-ignition engines which conform in all material respects to the design specifications that applied to those engines described in the documentation required by 40 CFR Part 1039 and which are produced during the model year stated on this certificate of the said manufacturer, as defined in 40 CFR Part 1039.

It is a term of this certificate that the manufacturer shall consent to all inspections described in 40 CFR 1068 and authorized in a warrant or court order. Failure to comply with the requirements of such a warrant or court order may lead to revocation or suspension of this certificate for reasons specified in 40 CFR Part 1039. It is also a term of this certificate that this certificate may be revoked or suspended or rendered void *ab initio* for other reasons specified in 40 CFR Part 1039.

the set

AL PROT

This certificate does not cover engines sold, offered for sale, or introduced, or delivered for introduction, into commerce in the U.S. prior to the effective date of the certificate.

Pursuant to the authority vested in California Air Resources Board by Sections 43013, 43018, 43101, 43102, 43104 and 43105 of the Health and Safety Code; and

Pursuant to the authority vested in the undersigned by Sections 39515 and 39516 of the Health and Safety Code and Executive Order G-19-095;

IT IS ORDERED AND RESOLVED: That the following compression-ignition engines and emission control systems produced by the manufacturer are certified as described below for use in off-road equipment. Production engines shall be in all material respects the same as those for which certification is granted.

MODEL YEAR	ENGINE FAMILY	DISPLACEMENT (liters)	FUEL TYPE	USEFUL LIFE (hours)				
2023	PSZXL02.2ZTB	2.179	Diesel	5000				
SPECIAL	FEATURES & EMISSION	CONTROL SYSTEMS	TYPICAL EQUIPMENT APPLICATION					
Rec	ctronic Control Module, irculation, Diesel Oxida ocharger, Electronic Dir	ation Catalyst,	Generator	Set				

The engine models and codes are attached.

The following are the exhaust certification standards (STD) and certification levels (CERT) for non-methane hydrocarbon (NMHC), oxides of nitrogen (NOx), or non-methane hydrocarbon plus oxides of nitrogen (NMHC+NOx), carbon monoxide (CO), and particulate matter (PM) in grams per kilowatt-hour (g/kw-hr), and the opacity-of-smoke certification standards and certification levels in percent (%) during acceleration (Accel), lugging (Lug), and the peak value from either mode (Peak) for this engine family (Title 13, California Code of Regulations, (13 CCR) Section 2423):

RATED POWER CLASS	EMISSION				EXHAUST (g/kw-l	hr)		OF)	
	STANDARD		NMHC	NOx	NMHC+NOx	СО	PM	ACCEL	LUG	PEAK
19 ≤ kW< 37	Tier 4 Final	STD	N/A	N/A	4.7	5.5	0.03	N/A	N/A	N/A
		CERT	375	- 552	3.7	0.02	0.03	3 3	1550	555

BE IT FURTHER RESOLVED: That for the listed engine models, the manufacturer has submitted the information and materials to demonstrate certification compliance with 13 CCR Section 2424 (emission control labels), and 13 CCR Sections 2425 and 2426 (emission control system warranty).

Engines certified under this Executive Order must conform to all applicable California emission regulations.

This Executive Order is only granted to the engine family and model-year listed above. Engines in this family that are produced for any other model-year are not covered by this Executive Order.

Executed on this 21^{5+} day of July 2022.

John Schi for

Robin U. Lang, Chief Emissions Certification and Compliance Division

Attachment: Engine Models

EO #: U-R-006-0524

Family: PSZXL02.2ZTB Attachment

Attachment Last Revised: 6/28/2022

Model	Code	Trim	Config	Displacement	Displacement - Units	Peak Power	Peak Power - Units	Peak Power - Speed (rpm)	Peak Power - Fueling	Peak Power - Fue Units	Peak Torque	Peak Torque - Units	Peak Torque - Speed (rpm)	Peak Torque - Fuel	Peak Torque - Fue Units	el OBD	GHG	Special	Notes
	ALCOTO 7		14	2.179	L	40.2	HP	1800	36.0	mm3/stroke	117	lb-ft	1800	36.0	mm3/stroke			N/A	N/A
																			_
			_									_				_	_		
				-							-								-
				_															_
			-	_		_	-			_		_	-	-					
				_				-								_	_		
										_									
										_								-	—
(1		1	1	1					1	