# **EXHAUST EMISSION DATA SHEET**

## **MQ POWER GENERATOR SET**

Model: DCA300SSJU4F3



The engine used in this generator set is certified to comply with and CARB Mobile Off-Highway emission regulations. United States EPA Tier 4

**ENGINE DATA** 

Manufacturer: JOHN DEERE 4.66 Bore: (118 mm) Model: 6090HFG06 Stroke: 5.35 in. (136 mm) Type: 4-Cycle, In-Line, 6-Cylinder, Diesel Displacement: 549 (9.0 liters) cid

16.0:1

Aspiration: Compression Ratio: Turbocharger, ECM, EGR, DOC, SCR Electronic Direct

Injection, Charge Air Cooler

PERFORMANCE DATA

SAE Gross HP @ 1800 RPM (60 Hz) Rated 437 Load Fuel Consumption (gal/Hr) Rated 16.7 Load Exhaust Gas Flow (cfm) Rated Load 1448 Exhaust Gas Temperature (°F) 831

| United States EPA - M | obile Off-Highway Tier 4 | Limits -      | 174≤ ~ ≤751 BHP |
|-----------------------|--------------------------|---------------|-----------------|
| Criteria Pollutant    | Fmission Requirements    | Certified Eng | nine Emissions  |

| Criteria Pollutant               | Emission Requirements | Certified Engine Emissions |
|----------------------------------|-----------------------|----------------------------|
| NOx (Oxides of Nitrogen as NO2)  | 0.298 gr/bhp-hr       | 0.074 gr/bhp-hr            |
| HC (Total Unburned Hydrocarbons) | N/A gr/bhp-hr         | N/A gr/bhp-hr              |
| NOx + HC (Combined)              | N/A gr/bhp-hr         | N/A gr/bhp-hr              |
| CO (Carbon Monoxide)             | 2.609 gr/bhp-hr       | 0.007 gr/bhp-hr            |
| PM (Particulate Matter)          | 0.014 gr/bhp-hr       | 0.014 gr/bhp-hr            |
| NMHC (Non-Methane Hydrocarbons)  | 0.141 gr/bhp-hr       | 0.002 gr/bhp-hr            |
| NMHC + NOx                       | N/A gr/bhp-hr         | N/A gr/bhp-hr              |

**EPA Engine Family:** MJDXL09.0313 **EPA Certificate of Conformance:** MJDXL09.0313-017 ARB Executive Order: U-R-004-0610 Model Year 2021 **Effective Date:** 

Note: Engine operation with excessive air intake or exhaust restriction beyond factory published maximum limits, or with improper service maintenance, may result in higher emission levels.

Date: 4/15/21 Data And Specifications Subject To Change Without Notice



### UNITED STATES ENVIRONMENTAL PROTECTION AGENCY 2021 MODEL YEAR CERTIFICATE OF CONFORMITY WITH THE CLEAN AIR ACT

#### OFFICE OF TRANSPORTATION AND AIR QUALITY ANN ARBOR, MICHIGAN 48105

Certificate Issued To: Deere & Company

(U.S. Manufacturer or Importer)

Certificate Number: MJDXL09.0313-017

**Effective Date:** 08/17/2020

**Expiration Date:** 12/31/2021

Issue Date: 08/17/2020

> **Revision Date:** N/A

Model Year: 2021

Manufacturer Type: Original Engine Manufacturer

Engine Family: MJDXL09.0313

Mobile/Stationary Indicator: Both

Emissions Power Category: 130<=kW<=560

Fuel Type: Diesel

After Treatment Devices: Diesel Oxidation Catalyst, Ammonia Slip Catalyst, Selective Catalytic

Byron J. Bunker, Division Director

Compliance Division

Reduction

Non-after Treatment Devices: Electronic Control, Electronic/Electric EGR - Cooled, Non-standard

Non-After Treatment Device Installed

Pursuant to Section 111 and Section 213 of the Clean Air Act (42 U.S.C. sections 7411 and 7547) and 40 CFR Parts 60 and 1039, and subject to the terms and conditions prescribed in those provisions, this certificate of conformity is hereby issued with respect to the test engines which have been found to conform to applicable requirements and which represent the following engines, by engine family, more fully described in the documentation required by 40 CFR Parts 60 and 1039 and produced in the stated model year.

This certificate of conformity covers only those new compression-ignition engines which conform in all material respects to the design specifications that applied to those engines described in the documentation required by 40 CFR Parts 60 and 1039 and which are produced during the model year stated on this certificate of the said manufacturer, as defined in 40 CFR Parts 60 and 1039.

It is a term of this certificate that the manufacturer shall consent to all inspections described in 40 CFR 1068 and authorized in a warrant or court order. Failure to comply with the requirements of such a warrant or court order may lead to revocation or suspension of this certificate for reasons specified in 40 CFR Parts 60 and 1039. It is also a term of this certificate that this certificate may be revoked or suspended or rendered void ab initio for other reasons specified in 40 CFR Parts 60 and 1039.

This certificate does not cover engines sold, offered for sale, or introduced, or delivered for introduction, into commerce in the U.S. prior to the effective date of the certificate.



#### **JOHN DEERE POWER SYSTEMS**

EXECUTIVE ORDER U-R-004-0610 New Off-Road Compression-Ignition Engines

Pursuant to the authority vested in California Air Resources Board by Sections 43013, 43018, 43101, 43102, 43104 and 43105 of the Health and Safety Code; and

Pursuant to the authority vested in the undersigned by Sections 39515 and 39516 of the Health and Safety Code and Executive Order G-19-095;

IT IS ORDERED AND RESOLVED: That the following compression-ignition engines and emission control systems produced by the manufacturer are certified as described below for use in off-road equipment. Production engines shall be in all material respects the same as those for which certification is granted.

| MODEL<br>YEAR           | ENGINE FAMILY                                                                                           | DISPLACEMENT (liters)                      | FUEL TYPE                                                  | USEFUL LIFE<br>(hours) |  |  |  |  |  |
|-------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------|------------------------|--|--|--|--|--|
| 2021                    | MJDXL09.0313                                                                                            | 9.0                                        | Diesel                                                     | 8000                   |  |  |  |  |  |
| SPECIAL                 | FEATURES & EMISSION (                                                                                   | CONTROL SYSTEMS                            | TYPICAL EQUIPMENT APPLICATION                              |                        |  |  |  |  |  |
| Direct Inje<br>Gas Reci | Air Cooler, Oxidation C<br>ection, Electronic Contr<br>rculation, Turbocharger<br>tion-Urea, Ammonia Ox | ol Module, Exhaust<br>, Selective Catalyst | Pump, Compressor, Generator Set, O<br>Industrial Equipment |                        |  |  |  |  |  |

The engine models and codes are attached.

The following are the exhaust certification standards (STD) and certification levels (CERT) for non-methane hydrocarbon (NMHC), oxides of nitrogen (NOx), or non-methane hydrocarbon plus oxides of nitrogen (NMHC+NOx), carbon monoxide (CO), and particulate matter (PM) in grams per kilowatt-hour (g/kw-hr), and the opacity-of-smoke certification standards and certification levels in percent (%) during acceleration (Accel), lugging (Lug), and the peak value from either mode (Peak) for this engine family (Title 13, California Code of Regulations, (13 CCR) Section 2423):

| RATED POWER CLASS | EMISSION             |      |          | E    | EXHAUST (g/kw-l | nr)  |      | OF    | PACITY (% | 6)   |
|-------------------|----------------------|------|----------|------|-----------------|------|------|-------|-----------|------|
|                   | STANDARD<br>CATEGORY |      | NMHC NOx |      | NMHC+NOx        | co   | PM   | ACCEL | LUG       | PEAK |
| 130 ≤ kW ≤ 560    | Tier 4 Final         | STD  | 0.19     | 0.40 | N/A             | 3.5  | 0.02 | N/A   | N/A       | N/A  |
|                   |                      | CERT | 0.004    | 0.10 | -               | 0.01 | 0.02 | -     |           |      |

**BE IT FURTHER RESOLVED:** That for the listed engine models, the manufacturer has submitted the information and materials to demonstrate certification compliance with 13 CCR Section 2424 (emission control labels), and 13 CCR Sections 2425 and 2426 (emission control system warranty).

Engines certified under this Executive Order must conform to all applicable California emission regulations.

This Executive Order is only granted to the engine family and model-year listed above. Engines in this family that are produced for any other model-year are not covered by this Executive Order.

Executed on this 8th day of December 2020.

Allen Lyons, Chief

**Emissions Certification and Compliance Division** 

| Attachment: Engine Models EO #: U-R-004-0610 |            |      |        | Family: MJDXL09.0313 Attachment Last Revised: 11/11/2020 |                         |            |                       |                             |                         |                            |             |                        |                              |                       |                             |     |     |         |         |
|----------------------------------------------|------------|------|--------|----------------------------------------------------------|-------------------------|------------|-----------------------|-----------------------------|-------------------------|----------------------------|-------------|------------------------|------------------------------|-----------------------|-----------------------------|-----|-----|---------|---------|
| Model                                        | Code       | Trim | Config | Displacement                                             | Displacement -<br>Units | Peak Power | Peak Power -<br>Units | Peak Power -<br>Speed (rpm) | Peak Power -<br>Fueling | Peak Power -<br>Fuel Units | Peak Torque | Peak Torque -<br>Units | Peak Torque -<br>Speed (rpm) | Peak Torque -<br>Fuel | Peak Torque -<br>Fuel Units | OBD | GHG | Special | Notes   |
| 6090                                         | 6090HFG06A | N/A  | L6     | 9.0                                                      | Liters                  | 345        | kilowatt              | 1800                        | 263.2                   | mm3/stroke                 | 1830        | N-m                    | 1800                         | 263.2                 | mm3/stroke                  | N/A | N/A | N/A     | N/A     |
| 6090                                         | 6090HFG06B | N/A  | L6     | 9.0                                                      | Liters                  | 300        | kilowatt              | 1500                        | 269.8                   | mm3/stroke                 | 1910        | N-m                    | 1500                         | 269.8                 | mm3/stroke                  | N/A | N/A | N/A     | N/A     |
| 6090                                         | 6090HFG06C |      | L6     | 9.0                                                      | Liters                  | 326        | kilowatt              | 1800                        | 247.5                   | mm3/stroke                 | 1731        | N-m                    | 1800                         | 247.5                 | mm3/stroke                  | N/A | N/A | N/A     | N/A     |
| 6090                                         | 6090HFG06D | N/A  | L6     | 9.0                                                      | Liters                  | 300        | kilowatt              | 1500                        | 269.5                   | mm3/stroke                 | 1910        | N-m                    | 1500                         | 269.5                 | mm3/stroke                  | N/A | N/A | N/A     | N/A     |
| 6090                                         | 6090HFG06E | N/A  | L6     | 9.0                                                      | Liters                  | 273        | kilowatt              | 1800                        | 201.3                   | mm3/stroke                 | 1448        | N-m                    | 1800                         | 201.3                 | mm3/stroke                  | N/A | N/A | N/A     | N/A     |
| 6090                                         | 6090HFG06F | N/A  | L6     | 9.0                                                      | Liters                  | 273        | kilowatt              | 1500                        | 243                     | mm3/stroke                 | 1737        | N-m                    | 1500                         | 243                   | mm3/stroke                  | N/A | N/A | N/A     | N/A     |
| 6090                                         | 6090HPRNT7 |      | L6     | 9.0                                                      | Liters                  | 364        | kilowatt              | 1800                        | 277.6                   | mm3/stroke                 | 1934        | N-m                    | 1800                         | 277.6                 | mm3/stroke                  | N/A | N/A | N/A     | N/A     |
|                                              |            |      |        |                                                          |                         |            |                       |                             |                         |                            |             |                        |                              |                       |                             |     |     |         |         |
|                                              |            |      |        |                                                          |                         |            |                       |                             |                         |                            |             |                        |                              |                       |                             |     |     |         |         |
|                                              |            |      |        |                                                          |                         |            |                       |                             |                         |                            |             |                        |                              |                       |                             |     |     |         |         |
|                                              |            |      |        |                                                          |                         |            |                       |                             |                         |                            |             |                        |                              |                       |                             |     |     |         |         |
|                                              |            |      |        |                                                          |                         |            |                       |                             |                         |                            |             |                        |                              |                       |                             |     |     |         |         |
|                                              |            |      |        |                                                          |                         |            |                       |                             |                         |                            |             |                        |                              |                       |                             |     |     |         |         |
|                                              |            |      |        |                                                          |                         |            |                       |                             |                         |                            |             |                        |                              |                       |                             |     |     |         |         |
|                                              |            |      |        |                                                          |                         |            |                       |                             |                         |                            |             |                        |                              |                       |                             |     |     |         |         |
|                                              |            |      |        |                                                          |                         |            |                       |                             |                         |                            |             |                        |                              |                       |                             |     |     |         |         |
|                                              |            |      |        |                                                          |                         |            |                       |                             |                         |                            |             |                        |                              |                       |                             |     |     |         |         |
|                                              |            |      |        |                                                          |                         |            |                       |                             |                         |                            |             |                        |                              |                       |                             |     |     |         |         |
|                                              |            |      |        |                                                          |                         |            |                       |                             |                         |                            |             |                        |                              |                       |                             |     |     |         |         |
|                                              |            |      |        |                                                          |                         |            |                       |                             |                         |                            |             |                        |                              |                       |                             |     |     |         |         |
|                                              |            |      |        |                                                          |                         |            |                       |                             |                         |                            |             |                        |                              |                       |                             |     |     | $\perp$ | $\perp$ |
|                                              |            |      |        |                                                          |                         |            |                       |                             |                         |                            |             |                        |                              |                       |                             |     |     |         |         |
|                                              | 1          |      |        |                                                          |                         |            |                       |                             |                         |                            |             |                        |                              |                       |                             |     |     | $\perp$ |         |
|                                              |            |      |        |                                                          |                         |            |                       |                             |                         |                            |             |                        |                              |                       |                             |     |     |         |         |
|                                              |            |      |        |                                                          |                         |            |                       |                             |                         |                            |             |                        |                              |                       |                             |     |     |         |         |